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In this paper a derivation is given of an integro-di!erential equation for the determination of
the de#ection of a large #oating #exible platform, excited by waves. The formulation is
presented for the general three-dimensional case where also a current may be present. For the
two-dimensional case (1-D platform) a solution method with orthogonal function expansions
turns out to be nonconvergent and therefore we have chosen to use a "nite-di!erence method
to tackle the fourth-order derivatives. This method seems to be e$cient and may be extended to
the general three-dimensional case. In this paper, we present 2-D results only. For the zero
current situation the amplitude of the de#ection of the platform together with the re#ection and
transmission coe$cients are shown. Furthermore, for several values of the wavelength, the
in#uence of the current is studied. The analysis for the response of a 2-D platform to a moving
pressure point is then given. ( 2000 Academic Press.
1. INTRODUCTION

TRADITIONALLY, THERE IS MUCH INTEREST IN LITERATURE in the behaviour of sea ice in#uenced
by waves. Squire et al. (1995) have presented an interesting overview of the research carried
out in the "eld of wave}ice interaction. Recently, we became interested in a similar
phenomenon, namely the behaviour of large #oating #exible platforms. These studies are
mainly carried out for the design of large #oating airports. The construction of such
platforms is under consideration in several parts of the world, so they may meet several
wave climates, ranging from sheltered areas to open areas where severe wave conditions
may occur. Also a strong tidal current may be present. In this paper, we present an
approach to describe the behaviour of a platform of general shape in current and in#uenced
by long crested waves. The method to solve this problem is based on a boundary element
method. For the one-dimensional platform with normal incident waves the numerical
approach will be explained. A derivation of an expansion in orthogonal functions is
described; however, this approach does not lead to reliable results in the range of para-
meters considered. It is decided to solve the resulting integral}di!erential equation by
means of a "nite-di!erence scheme.

First, we derive a formulation for the general two-dimensional platform. In the cases with
or without current we obtain two di!erent integral equations. In our approach, they have
the same structure and can be solved in a similar way. The main di!erences are that the
free-surface Green's functions di!er and that in the current case the derivative with respect
to z instead of the Green's function itself has to be taken into account under the integral.
0889}9746/00/100943#14 $35.00/0 ( 2000 Academic Press
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A detailed treatment of the two-dimensional case will be presented. This is done because it
gives insight into how the method can be treated in the more general three-dimensional
problem.

2. MATHEMATICAL FORMULATION

In this section, we derive the general formulation for the di!raction of waves by a #exible
platform of general geometric form. We restrict ourselves to platforms with constant elastic
properties. This restriction can be weakened later on.

The #uid is incompressible, so we introduce the velocity potential UM (x, t)"$V(x, t),
where V(x, t) is the #uid velocity vector. We assume that the potential function can be split
up into a steady and an unsteady part, while the steady part is approximated by;x. Hence,
we write

UM (x, t)";x#U(x, t),

and we get for the potential function U(x, t) the Laplace equation

DU"0 in the #uid (1)

together with the linearized kinematic condition, U
z
"w

t
#;w

x
, and dynamic condition,

p/o"!U
t
!;U

x
!gw, at the linearized free water surface z"0, where w(x, y, t) denotes

the free-surface elevation, and o is the density of the water. The linearized free-surface
condition outside the platform becomes

G
L2
Lt2

#2;
L2

LxLt
#;2

L2

Lx2H U#g
LU

Lz
"0 (2)

at z"0 and (x, y)3F.
The platform is assumed to be a thin layer at the free-surface z"0, which seems to be

a good model for a shallow draft platform. The platform is modelled as an elastic plate with
zero thickness. To describe the de#ection w we apply the thin-plate theory, which leads to
an equation for w of the form

m
L2w
Lt2

"!DA
L2
Lx2

#

L2
Ly2B

2
w#p D

z/0
, (3)

where m is the mass of unit area of the platform while D is its equivalent #exural rigidity. We
apply the operator (L/Lt)#; (L/Lx) to equation (3) and use the kinematic and dynamic
condition to arrive at the following equation for U at z"0 and in the platform area
(x, y)3P:

G
D

og A
L2
Lx2

#

L2
Ly2B

2
#

m

og

L2
Lt2

#1H
LU

Lz
#

1

g G
L2
Lt2

#2;
L2

LxLt
#;2

L2
Lx2HU"0. (4)

The free edges of the platform are free of shear forces and moment. We assume that the
radius of curvature, in the horizontal plane, of the edge is large. Hence, the edge may
be considered to be straight locally. We then approximate the boundary conditions at the
edge by

L2w
Ln2

#l
L2w
Ls2

"0 and
L3w
Ln3

#(2!l)
L3w

LnLs2
"0, (5)

where l is Poisson's ratio, n is in the normal direction in the horizontal plane, along the
edge, and s denotes the arc-length along the edge.



Figure 1. De"nition of the geometry.
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We consider the di!raction of a plane wave, incident under an angle b with respect to the
undisturbed current,;, in the direction of the positive x-axis. The potential function U has
to be decomposed into a steady and an unsteady part. However, we assume that the steady
in-coming current is not in#uenced by the platform. This is a reasonable assumption for
a shallow draft platform, that is kept at on location by means of an anchoring system.

The harmonic wave can be written as U(x, t)"/ (x)e~*ut, and the undisturbed incident
wave equals

/*/#(x)"
f
0

gu
0

expMik
0
(x cosb#y sinb )#k

0
zN, (6)

where f
0
is the wave height, u the frequency of encounter, while u

0
"u!k

0
; cosb de"nes

the wave number k
0
"u2

0
/g for the in"nitely deep-water case.

The #uid domain will be split into two regions. We de"ne the region underneath the
platform as D~ and the region towards in"nity as D`, while the interface is denoted by LD.
The potential function inD` is written as a superposition of the incident wave potential and
a di!racted wave potential, as follows:

/ (x)"/*/# (x)#/` (x), (7)

while the total potential in D~ is denoted by /~ (x), as shown in Figure 1. It will be shown
that this choice leads to an interesting way to derive an integral equation, that can be solved
numerically. At the dividing surface LD we require continuity of the total potential and its
normal derivative.

We introduce the Green's function G(x, n ) that ful"lls DG"4nd(x!n ), the free surface
and the radiation condition. Green's functions for several free-surface problems can be
found in Wehausen & Laitone (1960). An appropriate function is given in the next section
for a particular problem. In principle, we can treat cases with or without current. In the next
subsection, we derive the integral equations for the zero current case. The formulation for
the current case is more complicated and will be treated separately.

2.1. ZERO CURRENT}VELOCITY

We apply Green's theorem to the potentials /` and /~, respectively. This leads to the
following approach.



946 A. J. HERMANS
For x3D`, we have

4n/`"!PLDXF A/`
LG
Ln

!G
L/`

Ln B dS,

0"PLDXP A/~
LG
Ln

!G
L/~

Ln B dS. (8)

If x3D~, we have

0"!PLDXF A/`
LG
Ln

!G
L/`

Ln B dS,

4n/~"PLDXP A/~
LG
Ln

!G
L/~

Ln B dS. (9)

The integrals over F become zero, due to the zero-current free-surface condition for
G and /`. We add up the two expressions in equation (9) and use the free-surface condition
for the Green's function and the potential /`, which leads to

4n/~"PLD A[/]
LG
Ln

!G C
L/

LnDB dS#PP A
u2

g
/}!/~f B GdS for x3D~, (10)

where we use the notation [2] for the jump of the function concerned. Furthermore, we
use the jump condition between the potentials /` and /~ and their derivatives. For the
total potential the jumps are zero, so we obtain

4n/~"PLD A/*/#
LG
Ln

!G
L/*/#

Ln B dS!PP A
mu2

og
/~f !

D

og A
L2
Lm2

#

L2

Lg2B
2
/~f B GdS,

(11)

where we have used relation (4) for /~ at the platform. Relation (11) is suitable for further
manipulation to end up with a di!erential-integral equation, that can be solved numerically.
The Green's function itself has a weak singularity, so we may take the limit zP0 and use
equation (4) to express /~ in terms of an operator acting on /~

z
. Furthermore, we notice

that the "rst integral on the right-hand side of equation (11) can be simpli"ed signi"cantly.
This term is independent of the parameters of the platform, hence it is the same if there is no
platform present; it therefore equals 4n/*/#. This can also be veri"ed by manipulating the
integrals. We arrive at the following equation valid at z"0:

4n A/~
z
!

mu2

og
/~

z
#

D

og A
L2
Lx2

#

L2
Ly2B

2
/~
z B

#

u2

g PP A
mu2

og
/~f !

D

og A
L2

Lm2
#

L2
Lg2B

2
/~f B GdS

"

u2

g PLD A/*/#
LG
Ln

!G
L/*/#

Ln B dS"4n/*/#
;

. (12)

Equation (12), together with its boundary conditions (5) where we use the relation
!iuw"/~

z
, has to be solved numerically. In the following section, it will be shown how

this is done in the two-dimensional case. One must realize that the step from equation (11)
towards equation (12) cannot be carried out in the case of nonzero current. However, there
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is an other way to arrive at the same result. It is clear that one may di!erentiate eqution (11)
with respect to z and take the limit to z"0 afterwards. This operation is not trivial but it
leads to equation (12) directly, without making use of the actual free-surface condition
anymore. One must be very careful in treating the singularity of G

z
in the case that both

z and f tend to zero. Details of this step, for a di!erent analysis, are described by Noblesse
(1982). It the next subsection it will be shown that in the case of a current this approach has
to be followed.

2.2. NONZERO CURRENT VELOCITY

In the case of a steady current some of the steps carried out above need some special care. It
is well known in ship hydrodynamics that application of the free-surface condition in
Green's theorem gives rise to an extra line integral along the intersection of the body (in our
case the platform) and the free surface; see Brard (1972), Chang (1977) and Hermans
& Huijsmans (1987). If we follow the same steps as shown before, we arrive at the following
expression for /~ :

4n/~"PLD A/*/#
LG
Ln

!G
L/*/#

Ln BdS!
2i;u

g PC
f

/*/#G df

#

;2

g PC
f
C/*/#

LG
Lm

!Aas
L/*/#

Ls
!a

n

L/*/#

Ln B GDdf

!PP C
mu2

og
/~f !

D

og A
L2
Lm2

#

L2
Lg2B

2
/~f D G dS, (13)

where we introduce a
s
and a

n
as the cosine of the tangent and the normal vector to the

x-axis, respectively. At this stage the di!erence from the zero current case is only an extra
known integral along the water-line. Again, this expression can be simpli"ed as the "rst
three integrals equal 4n/*/#. The next step in arriving at an integral equation for the
unknown /~

z
at z"0 can only be done by di!erentiation of equation (13) with respect to z,

and taking the limit to z"0 afterwards.
We shall repeat the theory of section 9 of Noblesse (1982) for the forward speed case. The

Green's function G(x, n) can be found in Wehausen & Laitone (1960). The general form is

G (x, n )"!

1

r
#

1

r
1

#t` (x, n ) , (14)

where r"[R2#(z!f)2]1@2, r
1
"[R2#(z#f)2]1@2, R"[(x!m)2#(y!g)2]1@2, and

t` (x, n ) is de"ned as follows:

t` (x, n)"!

2g

n A P
c

0
P

=

0

#P
n@2

c PL
1

#P
n

n@2 PL2
BF (h, k) dhdk.

Here

F (h, k)"
kek*z`f`*(x~m)#04h+ cos[k(y!g) sin h]

gk!(u#k; cos h)2

with

c"G
0 if q(1

4
arc cos 1

4q if q50,



Figure 2. Contours of integration.
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and q";u/g. The contours have to be chosen such that the radiation conditions are
ful"lled. They are given in Figure 2, where the poles of the integrand are given by

Jgk
1
,Jgk

3
"

1!J1!4q cos h
2q cos h

u,

Jgk
2
,!Jgk

4
"

1#J1!4q cos h
2q cos h

u.

We now make use of an alternative way to write the Green's function G(x, n ). If one
notices that the function t`(x, n ) depends on z#f and not on z!f it may be written as

G(x, n )"!

1

r
!

1

r
1

#t~ (x, n ), (15)

where t~ (x, n) is de"ned accordingly. If we now look at the free-surface condition (2) we
rewrite it for G(x, n) as follows

gG
z
"!D[G]!g (1/r#1/r

1
)
z
#gt~

z
(x, n)#D[!1/r#1/r

1
]#D[t` (x, n )],

(16)

where the operator D[2] is de"ned as

D[2]"A!u2!2iu;
L
Lx

#;2
L2
Lx2B [2]. (17)

The free-surface condition shows that we have gG
z
#D[G]"0 on z"0 if f(0. It is

also obvious thatD[!1/r#1/r
1
]"0 on z"0 and (1/r#1/r

1
)
z
"0 on z"0 if f(0. Just

as in Noblesse's case one may conclude that

gt~
z

(x, n )#D[t`(x, n)]"0 for all z40. (18)

Hence, one may write

G
z
"!(1/r#1/r

1
)
z
!1/gD[G#1/r!1/r

1
], (19)

while G may be written as G"!1/r#g (R, z#f). So, if one di!erentiates (14) with respect
to z and takes the limit zP0, one obtains the following Fredholm integral equation:

4n A/~
z
!

mu2

og
/~

z
#

D

og A
L2
Lx2

#

L2
Ly2B

2
/~
z B

"4n/*/#
;

!PP A
mu2

og
/~f !

D

og A
L2
Lm2

#

L2
Lg2B

2
/~f B Gz

dS. (20)
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If we replace the function /~
z

by !iuw#;w
x
, we obtain an equation for the elevation

of the platform. The extra derivative with respect to x has to be treated with upwind
di!erencing. Again we have the boundary conditions (5) for the function w at the free edge of
the platform. In the next section, we present details of the numerical approach to solving the
integro-di!erential equation.

3. ONE-DIMENSIONAL PLATFORM

3.1. NO CURRENT, PERPENDICULAR ANGLE OF INCIDENCE

A good demonstration of the method is the treatment of the two-dimensional problem.
First, we give an outline of the approach for the situation that no current is present and the
incident waves are normal to the edge. The integro-di!erential equation for the potential
/~ at z"0 becomes

!Ai/~
z
!D

L4/~
z

Lx4 B#d2PP Ak/~f !D
L4/~f
Lm4 BG dm"/*/#

z
, (21)

where we have introduced the parameters

k"
mu2

og
, i"k!1, d2"

u2

2ng
"

k
0

2n
and D"

D

og

together with the boundary conditions

L2/~
z

Lx2
"

L3/~
z

Lx3
"0 at x"0 and x"l,

l being the length of the plate. The Green's function, obeying the radiation condition, has
the form

G(x, n)!ln r"!ln r
1
!2PL{

1

k!k
0

ek(z`f) cos k (x!m) dk

"PL{
A

k#k
0

(k!k
0
)k

ek(z`f) cos k (x!m)#
1

k
e~kB dk, (22)

where the contour L@ is in the complex k-plane from k"0 to R that passes, due to the
radiation condition, underneath the pole of the integrand k"k

0
"u2/g, see Figure 3.

To solve equation (21) it is possible to make use of an expansion in eigenmodes for the
de#ection of the plate, hence in terms of eigenfunctions of

L4t
Lx4

"j4t with
L3t
Lx3

"

L2t
Lx2

"0 (23)

at x"0 and l. The orthonormal eigenfunctions are t
n
(x)"tM

n
(x)/[ : l

0
tM 2
n
(x) dx]1@2, de"ned

by

tM
n
(x)"(cos j

n
x#cosh j

n
x)!

(cos j
n
l!cosh j

n
l)

(sin j
n
l!sinh j

n
l )

(sin j
n
x#sinh j

n
x), (24)
Figure 3. Contour of integration.
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where j
n
is the eigenvalue of the problem, obtained from the zeros of

cos j
n
l cosh j

n
l"1 with n"1, 2,

2
.

Associated with the double root j
0
"0 we have the orthogonal eigenfunctions

tM
~1

"1#J3x/l and tM
0
"1!J3x/l.

We expand the de#ection of the platform w(x, t)"wJ (x)e~*ut in terms of the eigenfunc-
tions, just de"ned. The function /~

z
is therefore written as

/~
z

(x, 0)"!iuwJ (x)"!iu
N
+

n/~1

a
n
t

n
(x).

If we multiply equation (20) with t
m
(x) and integrate with respect to x, we get the

following set of equations for the coe$cients a
m
:

(Dj4
m
!i)a

m
!d2

N
+

n/~1

a
n
(Dj4

n
!k )g

m,n
"

i

u
c
m

(25)

for m"!1, 0,2,N, where we have introduced

g
m,n

"P
l

0
P

l

0

t
n
(m)G(x, 0, m, 0)t

m
(x) dxdm (26)

and

c
m
"P

l

0

/*/#
z

(x, 0)t
m
(x) dx. (27)

The integration with respect to x and m in equation (26) and with respect to x in equation
(27) is carried out analytically, while the integration with respect to k in equation (22) is
carried out numerically. This last step can be done by integrating along the contour L@ as
given in Figure (3) or by performing a contour deformation "rst.

This method is applied for a platform with a length l"300 m in long waves and with
several values of the #exural rigidity. In Figure 4 we show computations of the amplitude of
the de#ection for j/l"0)5, 0)1, respectively, and D/og"1]107 m4, computed with the
Figure 4. Amplitude of the de#ection for D/og"107m4, m/o"1/4 m and l"300m, computed by the two methods.
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method described above and compared with a "nite di!erence approach. The results
compare very well. No di!erence between the results is visible. A disadvantage of the
expansion method is the fact that this approach cannot be used in the case of a general
two-dimensional platform, due to the boundary conditions at the edge of the platform.

We have chosen an approach that can be extended to general geometric forms and
where one may take care of the local behaviour easily. In this case, we employ a "nite-
di!erence approach with equidistant grid points, su$ciently "ne to cover the local e!ects. In
the two-dimensional case it is advisable to use a nonuniform grid. The fourth-order
derivative is represented by a "ve-point central di!erence scheme. This is also used for the
end-points of the platform, by introduction of two grid points outside the physical plane.
The two boundary conditions at the boundaries of the platform give rise to four extra
equations. We therefore obtain a square (n#4, n#4) matrix equation if we consider
n collocation point plus four external points. The matrix is fully populated due to the
integral, and to compute its coe$cients the integration with respect to m is carried out
analytically, before the integration with respect to k in the de"nition of the Green's
function. For the integration with respect to k, the contour in the complex k plane is
deformed, leading to a residue from the pole plus an integration along the imaginary axis.
This last integration is carried out with a fast Gauss integration procedure for exponential
integrals.

Examples of the computation of the amplitude of the de#ection w of the platform
are shown in Figure 5, while in Figure 6 the re#ection and transmission coe$cients
are given.
Figure 5. Amplitude of the de#ection for a platform with l"300 m, j/l"0)5, 0)3, 0)1 and several values of the
rigidity: (a) D/og"1010 m4 ; (b) D/og"107 m4 ; (c) D/og"105 m4.



Figure 6. Re#ection and transmission coe$cients with D/og"105 m4, m/o"1/4 m and l"300 m.

Figure 7. Contours of integration.
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3.2. WITH A CURRENT, PERPENDICULAR ANGLE OF INCIDENCE

The integro-di!erential equation now becomes

!Ai/~
z
!

D

og

L4/~
z

Lx4 B#
1

2n PP Ak/~f !
D

og

L4/~f
Lm4 BGI z dm"/*/#

z
. (28)

The Green's function has the form

GI (x, n )"ln A
r

r
1
B#2 PL1

1

u2/g!(2q#1)k#k2 (;2/g)
e*k(x~m)`k(z`f)dk

#2PL2

1

u2/g!(2q!1)k#k2 (;2/g)
e*k(x~m)~k(z`f)dk, (29)

where q"u;/g and the contoursL1 and L2 are de"ned in Figure 7, in the case q(1
4
. The

poles are de"ned as

k`
1,2

"

(2q#1)$J1#4q
2;2/g

,

k~
1,2

"

(2q!1)$J1!4q
2;2/g

.



Figure 8. Amplitude of the de#ection for j/l"0)5, 0)1 and q"0)005, 0)01, 0)02: (a) D/og"107 m4, j/l"0)5; (b)
D/og"105 m4, j/l"0)5; (c) D/og"107 m4, j/l"0)1; (d) D/og"105 m4, j/l"0)1.
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To obtain an equation for the de#ection w we introduce /
z
"!iuw#;w

x
. The

di!erential operator in the equation for w becomes of "fth order. The extra derivative can be
taken care of by means of upwind di!erencing, which alters the matrix considerably,
compared with the zero speed case. Numerical excercises show that the results converge to
those obtained in Figure 5 for ;P0.

For small values of q the contribution of the poles at k`,~
2

becomes highly oscillatory. In
the computations, their in#uence can be taken care of by choosing extremely small grid
sizes. It can be shown that their "nal in#uence is negligible. For two values of the
wavelength, j/l"0)5, 0)1, respectively, the computations of the de#ection of the platform
are shown in Figure 8. The e!ect of the current is clearly visible.

4. MOVING PRESSURE POINT

In this section, we consider the response of the platform to a moving point source. We
consider the e!ect of an accelerating aircraft before take o! or a decelerating one after
landing. The process we describe is unstationary. The position of the pressure disturbance is
along the x-axis at the position x"a (t). The condition at the platform surface for t'0
becomes

G
D

og A
L2
Lx2

#

L2
Ly2B

2
#

m

og

L2
Lt2

#1H
LU

Lz
#

1

g

L2U
Lt2

"!

1

og

L
Lt

d(x!a (t))d (y) (30)
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at z"0 together with the Laplace equation. We apply a Fourier transform with respect to
x and a cosine transform with respect to y:

UM (a, b, z, t)"P
=

=
P

=

0

e*ax cosby U(x, y, z, t) dxdy. (31)

This leads to a surface condition of the form

G
D

og
(a2#b2 )2#

m

og

L2
Lt2

#1H
LUM
Lz

#

1

g

L2UM
Lt2

"!

1

og

L
Lt

e*aa(t) :"!

1

og

L
Lt

f (t) (32)

at z"0 together with

!(a2#b2)UM #UM
zz
"0 for z(0. (33)

We assume that for t40 the whole system is at rest, and we apply the Laplace transform
with respect to t:

/ (a, b, z, s)"P
=

0

UM (a, b, z, t)e~st dt. (34)

The resulting ordinary di!erential equation for /(a, b, z, s) is solved, making use of the
kinematic condition U

z
"w

t
at z"0. Finally, the following transform = (a,b, s) of the

elevation of the platform is obtained:

= (a,b, s)"
kF(s)

(s2#K2(k))(mk#o)
, (35)

where F(s) is the Laplace transform of f (t), k2 :"a2#b2 and

K2(k) :"
Dk5#kog

mk#o
.

The inverse Laplace transform is written as a convolution integral. Introducing
a"k cos h, b"k sin h and carrying out the integration with respect to h, we obtain

w(x, y, t)"!

1

2n P
=

k/0
P

t

q/0

kH(k) sin (K(k)(t!q))

]J
0
(kJ(x!a(q))2#y2 ) dkdq, (36)

where

H (k) :"
k

M(Dk5#ogk)(mk#o)N1@2
.

In the case D"0 and m"0 we have obtained the classical free-surface result as can be
found in Wehausen & Laitone (1960). To compute integral (36) the path of integration in the
complex k-plane has to be chosen such that the integrand behaves as closely as possible to
a function with a negative exponential, where we write for the zero-order Bessel function
J
0

its asymptotic expression for large values of its argument. Some analytic contour
deformations can be carried out for the case in which we neglect the e!ect of the density of

the water on the phase of the exponential function, K(k)"JD/mk2 :"lk2. The integral
can be computed directly by an accurate Gauss integration, which is straightforward but
rather time-consuming. Fast computer codes can be designed if necessary.

As an example some computations are carried out "rst for a decelerating unit point
source. The results are expressed in dimensionless form based on dividing length by

a characteristic dimension ¸. Thus time is non-dimensionalised by ¸2Jm/D and force by



Figure 9. Waveheight for a decelerating unit point source starting at t"0: (a) D¸4/og"10~3, t"2; (b)
D¸4/og"10~3, t"4; (c) D¸4/og"10~5, t"2; (d) D¸4/og"10~5, t"4.
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D/¸. The point source starts at t"0 in the origin and moves along the x-axis with

a(t)"ut!0)1t2. Results are given for the case u¸Jm/D"1 and m/o¸"1/4. In (a) and (b)
D¸4/og"10~3, and in (c) and (d) D¸4/og"10~5. If realistic values for a speci"c construc-
tion are available, the results can be computed. In the "gures we see a combination of
e!ects. In front of the point source we see the e!ect of an impulsive start combined with the
moving pattern. It seems that the velocity of the radial wave component is larger than the
speed of the point-source.

If we compare Figure 9(a) with Figure 10 we can see the e!ect of the velocity on the
waveheight for a decelerating unit point source.

The e!ect of the impulsive taking-o! becomes apparent if one looks at the e!ect of
a starting pressure point. In Figure 11 we show the surface elevation, at t"2 and 4, of an
accelerating point source starting at zero speed in the origin. The position of the point
source is given by a (t)"0)1t2. The "eld is a combination of a steady part and an unsteady
part described by an initial-value problem. The initial condition is given by the steady
solution. The steady part of a unit point source in the origin has the form

w(x, y)"!

1

2n P
=

k/0

k

Dk4#og
J
0
(kR) dk. (37)

For the chosen parameters it can be seen that the circular wave pattern is not present. It is
noticed that gravity does not give a substantial contribution in the form of a Kelvin-like
pattern. The pattern is dominated by elastic e!ects.

5. CONCLUSIONS

Results have been presented based on an analysis of a one-dimensional platform in waves
and a current. The maximum de#ection is shown not to be strongly dependent on the



Figure 10. Waveheight for a decelerating unit point source at t"2, starting at t"0, with u"2, D/og"10~3 and
m"1

4
.

Figure 11. Waveheight for an accelerating unit point source starting at t"0, with D¸4/og"10~3 and m/o¸"1
4
:

(a) t"2; (b) t"4.
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relative sti!ness of the platform. The e!ect of current becomes more pronounced as the
relative sti!ness is decreased.

Analysis of the response to a moving point force has also been given. In the case of
a decelerating force, the results show a radial wave propagating at a higher speed than that
of the point force. For an accelerating force, however, under the conditions examined, the
radial wave is not present. The wave pattern in the plate is then dominated by elastic e!ects.
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